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We consider the effect of heat exchange on the capillary instability of a liquid 
jet. It is shown that the instability parameters differ from the standard values 
only when the rate of heat exchange is large. 

In many technological devices, a flow of identical macroscopic particles is obtained 
by using the method of forced capillary break-up of liquid jets [i]. The diverse applications 
of this method have defined a whole class of problems connected with the study of the effect 
of different factors on the capillary break-up of liquid jets: electric, magnetic, acoustic, 
or other external fields can affect the characteristics of capillary break-up. In devices 
of cryodispersion technology, for example, the forced capillary break-up of the jet occurs in 
the presence of heat exchange with the surrounding medium [2]. Therefore it is important to 
study the parameters of a jet whose temperature differs from that of the external medium. 
Similar problems occur in the study of the capillary break-up of a jet with low vapor pres- 
sure in a vacuum [3]. A number of problems on the effect of heat exchange on the capillary 
instability of jets has already been considered in the literature [4, 5], however the in- 
fluence of the thermocapillary effect induced by a longitudinal temperature gradient on the 
instability increment has not been established. 

In the present paper we study the capillary instability of a cooled jet in the practi- 
cally important case when the external medium does not exert a dynamical perturbation on the 
surface of the jet (this is the case for low gas pressure, for example) and when mass ex- 
change is absent (i.e., we can neglect evaporation and condensation on the surface of the jet; 
this will be correct for liquid jets with low vapor pressure). 

To analyze the capillary instability of the cooled jet, we need to determine the aver- 
age temperature and velocity profiles, which then fix the state of the system whose stability 
is studied. We consider a nondeformable liquid jet flowing with velocity vj from an aper- 
ture of radius Rj and having a temperature Tj which differs from the temperature of the sur- 
rounding medium T s. The average temperature profile of the undeformed jet can be obtained 
from the heat equation written in dimensionless form: 
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The boundary conditions are 
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The exact solution of the problem (1)-(3) can easily be obtained by expanding the unknown 
function in a series of Bessel functions. However, it is more convenient for our purposes to 
use the asymptotic representation of the solution for distances from the point of discharge 
which are larger than the radius of the jet, and for Biot numbers Bi < i: 

- - - - x  1 - - - - r  ~ (4) 0(x, r ) ~ e x p t  Pe 4 , " 

A c c o r d i n g  t o  [ 6 ] ,  f o r  a f r e e  j e t  i n  a i r  a t  a t m o s p h e r i c  p r e s s u r e  Nu ~ 0 . 4 3  and  t h e  r a t i o  
x~/xj~l, therefore Bi < 0.43. For materials with high thermal conductivities one can have the 
case Bi/Pe ~ i with Bi ~ i. This situation is possible for thin sodium jets, for example 
(Rj = 10 -4 m, Pe ~ 10-2), flowing into a space filled with an inert gas at low pressure. It 
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follows from (4) that in this case the problem of stability of the jet can be formulated by 
neglecting the dependence of the temperature on the radial coordinate and considering only 
the effect of the longitudinal temperature gradient. For other liquids (water, oil, and so 
on) the combination of parameters Pe ~ I, Bi < i is more natural, and therefore in this case 
one can neglect the longitudinal temperature gradient and consider only its radial profile. 

We consider the latter case first and study the capillary instability of a jet with 
the temperature profile 

Oo(r) ( l  Bi ) = ---- r2  �9 (5) 
4 . 

Using the approximation of an infinitely long liquid cylinder [i], we introduce the stream 
function ~ for axisymmetric velocity perturbations: 
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We write the laws of conservation of momentum and energy in dimensionless form and linearized 
in the neighborhood of the state v x = v r = 0 and 8 = e0(r): 
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The boundary c o n d i t i o n s  on the  ax i s  of the  j e t  a re  
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and on the perturbed surface of the jet R(x, t) = i + h(x, t) we must have the kinematic 
boundary condition, the balance of the normal and tangential stresses, and the Cauchy condi- 
tion for the temperature perturbation T: 
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The pressure P can be found from the equation of motion 
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We assume the  fo l lowing  form of the  s o l u t i o n  of (7) and (8) ,  which s a t i s f i e s  (9) :  
[ I~(lr) ] I t  (kr) -F c,,r exp (yt -[- ikx), 

r = clr I1(k) - 11(1) 
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The constants cj are determined from the boundary conditions (i0). Substituting (ii) and 
(12) into (i0), we obtain the dispersion relation (see Appendix). 

Solution of the dispersion relation shows that the imaginary part of the increment is 
equal to zero and the unstable branch of the spectrum lies in the interval of wavenumbers 
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Fig. i. Dependence of the in- 
stability increment on wave- 
number for Oh = 0.01 and dif- 
ferent values of the Blot 
number: I) Bi = 1.0; 2) i0.0; 
3) 20.0 .  

0 < k < i. The calculations show that heat exchange with the surrounding medium affects the 
capillary instability of the jet only for very large Bi numbers and small Oh numbers, and 
shows up as a small shift in the maximum of the instability increment toward larger wave- 
number. With increasing Bi number (Bi > I) the increment first decreases, then increases. 
In the limit Bi ~ 1 it approaches the value holding in the absence of heat exchange. As 
an example, Fig. i shows the dependence ~(k) for a water jet with Rj = i0 -~ m for different 
values of Bi. 

We consider the other limiting case Pe ~ i, when the temperature variation along the 
jet must be taken into account, while the radial profile can be neglected. To determine the 
structure of the flow in the jet we consider an infinitely long liquid cylinder in which a 
constant temperature gradient 3T0/3x is created at the initial time. Tangential stresses 
are induced on the surface of the cylinder by the thermocapillary effect and they lead to a 
change in the velocity field. It can be shown that in this case the liquid moves with a 
velocity profile dependent on the radial coordinate: 

=-~- - - ~ - \  ox / ,,R~ 2 
We consider the stability of an infinitely long liquid cylinder with a nonuniform veloc- 

ity profile as given above. We obtain the following equation for the stream function, intro- 
duced according to [6]: 
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The boundary conditions on the axis of the jet are 
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On the perturbed surface of the jet R(x, t) = i + q(x, t) we have the kinematic boundary con- 
dition and the condition of balance of the tangential and normal stresses: 
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where P can be found from the relation 

dP 0~ Oh -~Na v,. -+- 2 Ox @ Oh Av~. 
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Equation (13) is  the Orr-Sommerfe ld equation [4 ] .  The d i f f i c u l t y  of so lv ing t h i s  equa- 
t i on  is well known. However, it should be noted that the problem (13)-(17) differs from the 
Orr-Sommerfeld problem, which arises in the theory of stability of flows with a nonuniform 
velocity profile. The difference is the presence of a free deformable surface in our problem. 
In essence, the problem (13)-(17) can be considered as a problem on the instability of a 
cylindrical column of liquid with internal flow. The internal flow obviously affects the 
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parameters of the instability, but the flow itself is stable. In the Orr-Sommerfeld 
problem we have the opposite situation in that the internal flow is unstable. 

We look for the solution of (13)-(17) in the form 

t]~ (x, r, t) = [ (1") exp (7t @ ikx), ~1 (x, t) = ~11~ exp (yt + ikx). 

From (13) we have the following equation for the function f(r): 
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R e c a l l i n g  t h e  above  d i s c u s s i o n ,  we l ook  f o r  t h e  s o l u t i o n  of  (18)  in  t h e  form of  an i n f i n i t e  
series satisfying the condition (14): 
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where  A~ j )  = 1 s i n c e  t h e  c o n s t a n t s  c j  a r e  a r b i t r a r y ,  and ~i, ~2 a r e  g i v e n  by 
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Substituting (19) into (18) and collecting the coefficients of identical powers r k, we ob- 
tain a system of linear equations for the coefficients A,(J). For practical calculations we 

K 

can put AiJ~I = 0 beginning with the value of s for which the corresponding terms only slightly 
affect the solution. Calculations show that we can use this assumption with s = 6. Substi- 
tuting (19) into the boundary conditions (15)-(17), we obtain the dispersion relation, whose 
explicit form is given in the Appendix (Eq. A.2). 

The calculations show that in the case considered here, heat exchange with the surround- 
ing medium affects the parameters of the capillary instability only for large longitudinal 
temperature gradients. As an example, Fig. 2 shows the calculated instability increment and 
oscillation frequency of a water jet of radius Rj = 10 -2 m. We see from the graphs that the 
value of the increment decreases as the longitudinal temperature gradient increases, and the 
maximum of the dependence 7(k) shifts towards larger wavelength, while the oscillation fre- 
quency decreases, i.e., the instability becomes oscillatory (in the absence of heat exchange 
the frequency is equal to zero). 

Our results show that the capillary instability of the jet can be affected by very 
intense heat exchange with the surrounding medium, which is rarely encountered in practice. 
However, in certain technologies, such as cryodispersion, the effect of heat exchange can be 
observed. 

APPENDIX 

In the approximation of large Peclet number the dispersion relation for the capillary 
instability of the jet can be written in the form 

i; (k) 
?2 + 2k Oh k Io (k------~- 

I1 (k) 
+ k ( 1 - - k  z) :10(k) 

-}- l~(k___~) I[ ~ 1,(8) 

to (k) 4 (D 

+ la(k) ] _ k ( l _ U )  l~(k) 
4 (k) 4 (k-----T- + 

l 2 -]- k 2 ] 
2kOh?  fl ( t ) l l (k)  - - O h y ~  + 

]1 (l) I 0 (k) 

Io (k) ] + 

+ kil 2 Bi A Oh 2 

(A - -  O h )  2 

4 (k___)_) 
S k ~ B i A - - k  3Bi7 2I~(k) 

- -  k37 

hi? Oh Bi 2 kil Bi 2 A Oh a 

2 (A - -  Oh) (A - -  Oh) z 

BiZ k3A BP, Io (k) 
7k2 - - 7 -  - -  11 (k) 

U BiOhl~  lo(1) + 
2 2 (A - -  Oh) la (t) 

lo(1) ki? Bi(1 - - B i ) ]  + [ ~ - -  
I~ (t) 2 

I1 (13) 
/0 (8) 

Bi] 

406 



r] a ~ b 

~ o : ~  ~,~ . . . . . . . . . . .  ~'2 ....... ~,+ ....... )~ .... 0~ /, 
F i g .  2.  D e p e n d e n c e  o f  t h e  i n s t a b i l i t y  i n c r e m e n t  
( a )  and t h e  o s c i l l a t i o n  f r e q u e n c y  co o f  t h e  s u r f a c e  
o f  t h e  j e t  ( b )  on wavenumber  f o r  Oh = 1 . 2 . 1 0  -3 and 
d i f f e r e n t  v a l u e s  o f  Ma: 1) Ma = 1 . 3 " 1 0 - ~ ;  2)  6 . 3 - 1 0  -~. 

In the 
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approximation Pe << 1 the dispersion relation is given by the expression 
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NOTATION 

8 = [T(x) - T(s)]/(Tj - Ts) , dimensionless temperature; Pc=21~CpvjR/> , Peclet number; 

Bi=27~./?~/z~, Blot number; Nu.---Bi•215 Nusselt number; Cp and • , heat capacity and thermal con- 
ductivity of the liquid, respectively; a, mean heat transfer coefficient; • , thermal con- 
ductivity of the surrounding medium; x, = r, = Rj, distance scale; :X=(I/r)(O,4)r)r(d/r~r)+c~dx-', 
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Laplacian;~,= r(d/dr)(I/r)(d/dr)+(d2/dx~), second-order differential operator; A =• (We)'WPe; 
t,=(pR~/~) 'j2, time scale; We=v~pRj/~;S=(6~lOt)(T~--T~)l~; 12=ylOhr ~2=~iA+R2; In, modified Bessel 

function of order n; 3T0/~x, temperature gradient along the jet; o, surface tension; v, 
kinematic viscosity; k, wave number; vj, mean velocity of the jet; o, density of the liquid; 
Rj, initial radius of the jet; u0(r), initial velocity profile;Ma=Rs(Oo/OT)§ ; P, pres- 
sure perturbation; ~ = Yr + im; Oh, Onezorg number. 
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EXPERIMENTAL INVESTIGATION OF THE EFFECT OF THE SIGNAL-TO-NOISE RATIO ON 

THE CHARACTERISTICS OF FORCED CAPILLARY DISINTEGRATION OF A JET 

V. V. Blazhenkov, V. F. Gunbin, 
and S. I. Shcheglov 

UDC 532.5:66.069.83 

Dependences of the signal-to-noise ratio in a jet in the case of forced capillary 
disintegration of the jet (FCDJ) on the excitation signal, the mean jet velocity, 
the velocity distribution in the jet, and the jet diameter are derived. It is 
shown that, for equal excitation amplitudes, the signal-to-noise ratio in the case 
of FCDJ depends on the jet diameter and the velocity profile. A relationship be- 
tween the relative scatter of diameters of the droplets formed as a result of FCDJ 
and the signal-to-noise ratio is derived. 

The phenomenon of forced capillary disintegration of a liquid jet (FCDJ) is the basis 
of one of the most promising methods of generating an ordered flow of monodisperse (i.e., 
having similar dimensions) macroparticles. Such flow is finding increasingly wide applica- 
tion in technology and new techniques [i-3]. The basic advantages of this method include 
a high degree of monodispersity (a quantity which is the reciprocal of the coefficient of 
particle size variation), a considerable generation frequency, and a small angular divergence 
of the particle flux generated. 

One of the most important problems in designing generators of monodisperse droplets 
characterized by a high degree of monodispersity is the provision of a maximum signal-to- 
noise ratio in the disintegrating jet. In the final analysis, this ratio determines the 
characteristics of the droplets generated, such as the standard deviation of sizes and 
velocities, the angular divergence, and the presence or absence of associated drops. 

It should be mentioned that, until now, no attempt was made to determine experimentally 
the signal-to-noise ratio in the case of FCDJ. This is probably due to the difficulties in 
separating and recording the intensities of the many noise sources in the generator that are 
due to random frame vibrations, wall roughnesses in the outflow channel, relaxation of the 
velocity field in the jet, etc. The noise in the frequency band corresponding to the 
maximum gain increases the fastest, causing the let to disintegrate into droplets. 

For the criterion of the signal-to-noise ratio in FCDJ, we propose to use the ratio of 
the length Lj of the jet segment that has not disintegrated at a fixed level of the excitation 

Moscow Power Institute. Translated from Inzhenerno-fizicheskii Zhurnal, Vol. 4, pp. 
544-550, April, 1991. Original article submitted July 31, 1990. 

408 0022-0841/91/6004-0408512.50 �9 1991 Plenum Publishing Corporation 


